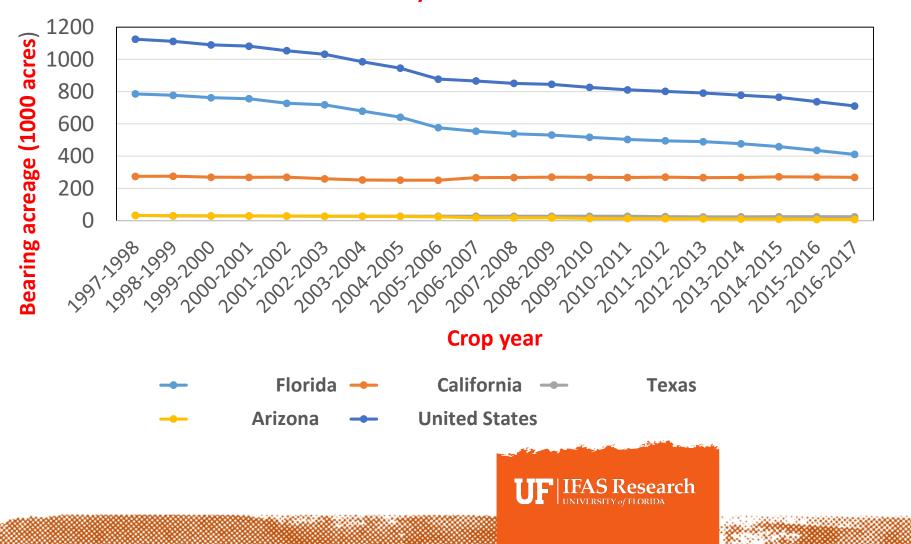
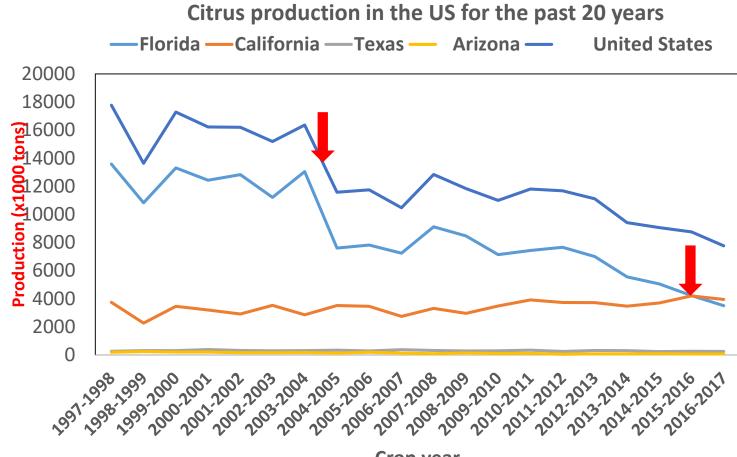
ASSESSING CITRUS CROP COEFFICIENTS FOR OPTIMIZING WATER USE AND SUSTAINING ENVIRONMENTAL QUALITY

Davie Kadyampakeni, Wije Bandaranayake and Samuel Kwakye UF/IFAS Citrus Research and Education Center, CREC, Lake Alfred, FL


E-mail: dkadyampakeni@ufl.edu

CURRENT CITRUS PRODUCTION STATUS


Bearing acreage and production of citrus in the US for the past 20

years

Florida bearing acreage has declined from **785,900 acres (70% of national production)** in 1998 to about **410,700 acres (58% of US production)** in 2017 representing about **48%** decline (USDA, 2018).

CURRENT CITRUS PRODUCTION STATUS (2)

Crop year

UF IFAS Research

Florida production has declined from <u>13.6 million tons (76% of</u> <u>national production)</u> in 1998 to about <u>3.5 million tons (45% of US</u> <u>production)</u> in 2017 representing about <u>74%</u> decline in production (USDA, 2018).

Bearing acreage and production losses have been ascribed largely to Huanglongbing (HLB) or citrus greening. Other reasons include hurricanes and urbanization.

WATER MANAGEMENT STRATEGIES FOR HLB-AFFECTED CITRUS TREES

- Preventative measures: HLB negative (healthy trees) (Ferrarezi et al. 2017a, 2017b, Schumann et al. 2017)
 - □ Frequent irrigation (daily or multiple times a day) e.g. Citrus Under Cover Production System
 - □ Regulated deficit irrigation
 - **Ensure Asian citrus psyllid (ACP) exclusion**
- Curative management of HLB positive trees (asymptomatic trees) (Kadyampakeni et al., 2014a,b,c)
 - **Daily irrigation plus ACP control**
 - □ Managing pH to optimum levels for nutrient availability
 - Improved nutrition programs via fertigation or use of controlled-release fertilizer (CRF) sources
- Remediation/Management of HLB affected trees (symptomatic trees) (Hamido et al., 2017a,b; Kadyampakeni and Morgan, 2017)
 - **Daily irrigation plus ACP control**
 - Managing pH to optimum levels for nutrient availability
 - Fertigation practices and CRF

UF IFAS Research

OBJECTIVES OF THE VARIOUS FIELD AND GREENHOUSE STUDIES

- Determining water use patterns of HLB-affected trees at field scale and in greenhouse conditions.
- Estimating crop coefficients for HLB-affected and healthy trees under greenhouse conditions.
- Evaluating soil moisture thresholds for HLB-affected trees in the greenhouse and field conditions.

HYPOTHESES FOR VARIOUS WATER MANAGEMENT STUDIES

- Frequent irrigation management practices would enhance growth, water use and crop resilience to HLB.
- Soil moisture availability would be optimal with frequent, but reduced irrigation level, and maintain and/or increase root growth, root water uptake and tree water use.

MATERIALS AND METHODS

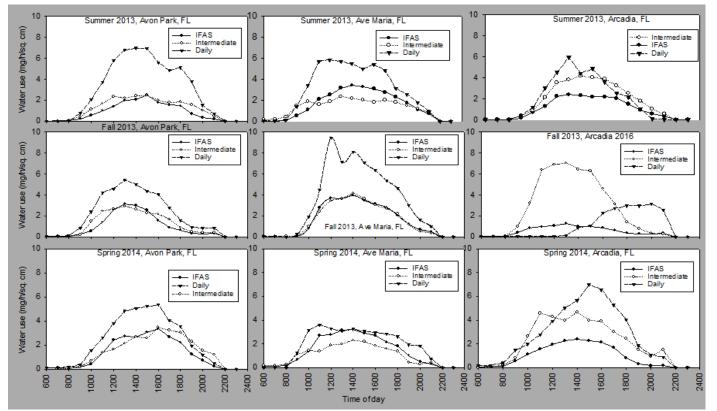
Water use measurements in field studies and greenhouse studies.

Use of sapflow sensors supported by a datalogger, solar panel, and 12-V battery (right and top)

Weighing lysimetry for measuring water use (left)

MATERIALS AND METHODS (2)

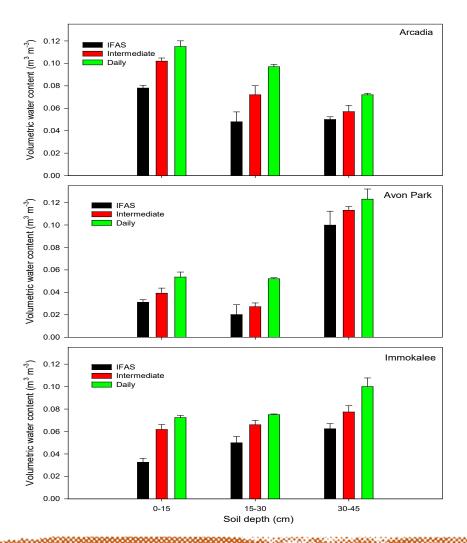
Water monitoring at grove scale and soil moisture measurement at 15, 30 and 60 cm soil depth


Water volume measurements at field scale

S Research

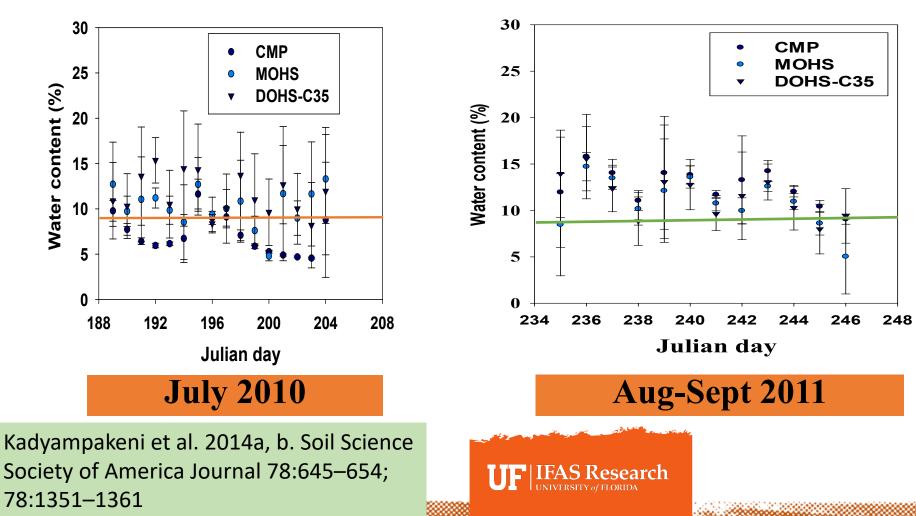
Evapotranspiration and root growth measurements between HLB affected and healthy trees under greenhouse conditions

TREE RESPONSE TO IRRIGATION SCHEDULES


IFAS Research

Water use of HLB affected trees in south west and central Florida

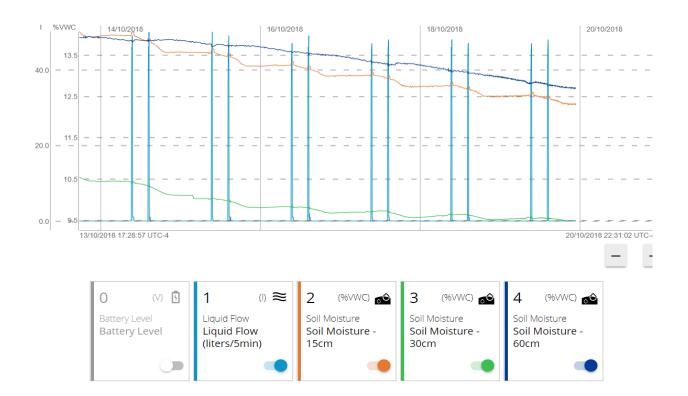
- Daily irrigation > Intermediate (irrigating every 1.5 days) > IFAS irrigation (irrigating every two days) scheduling
- Daily irrigation could help in managing HLB affected trees and reduce tree water stress
- <u>More details: Kadyampakeni</u> <u>and Morgan, 2017. Scientia</u> <u>Horticulturae 224:272-279</u>


SOIL MOISTURE DISTRIBUTION AT 3 DEPTHS

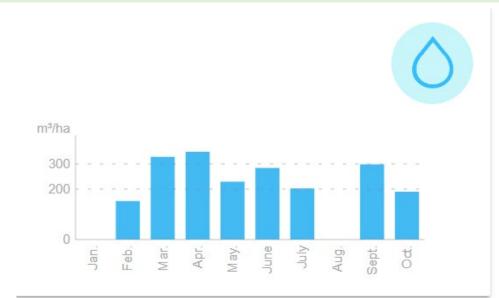
Keeping water in the top 0-30 cm improved water use for HLB affected trees. Greater moisture content beyond the root zone (at 45 cm) in Immokalee (bottom) could be due to capillary rise since the soils have a high water table and in Avon Park (middle) could be due to deep percolation because those soils are well drained.

> More details: Hamido et al. 2017a. HortScience 52(6):916-921.

SOIL MOISTURE DISTRIBUTION USING DRIP AND MICROSPRINKLER IRRIGATION SYSTEMS

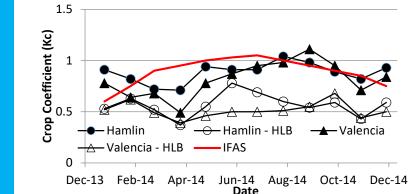


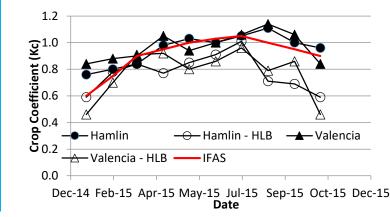
CMP-Conventional microsprinkler irrigation MOHS-Microprinkler open hydroponic system with daily irrigation and weekly fertigaton. DOHS-C35-Drip open hydroponic system with daily irrigation and fertigation


Soil moisture at 10 cm depth was close to or slightly above field capacity in the range of 7 and 15%.

MEASURING WATER CONTENT IN THE SOIL AND APPLIED WATER VOLUMES

Research


Water monitoring at grove scale and soil moisture distribution at 15, 30 and 60 cm soil depth



~217,238 gal/acre since Feb 2018

CROP COEFFIENTS FOR HLB VS NON-HLB AFFECTED TREES

- Patterns of crop coefficients (K_c) similar for HLB affected and nonaffected trees
- Non-affected tree K_c similar to those found to field trees prior to greening
- Infected trees consistently with lower $\rm K_{c}$
- K_c 35.2% and 20.8% lower for HLBaffected trees in 2014 and 2015, respectively.

Crop coefficient (Kc) for HLB affected trees in southwest Florida under greenhouse conditions

More details: Hamido et al. 2017b. HortTechnology 27(5):659-665

CROP EVAPOTRANSPRIRATION FOR HLB VS NON-HLB AFFECTED CITRUS

Month -year	ET	$ET_{c} (mm d^{-1})$		ET _c diff. (%) [‡]
	$(mm d^{-1})$	Hamlin-Non HLB	Hamlin-HLB	
Jan-Jun-14	3.57	2.97	2.23	23.73
Jul-Dec-14	4.42	4.16	2.63	34.82
Jan-Jun-2015	3.38	4.08	2.83	29.82
Jun-Oct-15	3.73	4.94	3.18	35.20
Overall Average	3.79	4.00a**	2.69b**	30.75
		Valencia-Non HLB	Valencia-HLB	
Jan-Jun-14	3.57	2.83	2.22	22.28
Jul-Dec-14	4.42	3.97	2.83	28.85
Jan-Jun-2015	3.38	3.85	2.69	30.98
Jun-Oct-15	3.73	4.79	3.56	26.42
Overall Average	3.79	3.82a**	2.80b**	26.99**

- 22 to 35% greater water use for Non-HLB affected trees
- Inter-season and annual variability in water use
- Comparable water use between varieties

SUMMARY

- Daily irrigation is critical for maintaining tree production and performance.
- Optimal irrigation scheduling along with monitoring water use is important for high irrigation efficiency, greater water use efficiency and minimizing leaching losses.
- Soil moisture content at or close to field capacity is possible with modified water application methods on Florida's sandy soils
- Trees affected by HLB appear to use about 22 to 35% less water than healthy trees. These results, if confirmed at field scale, will result in modified crop coefficients for HLB-affected citrus leading to water savings.

ACKNOWLEDGEMENTS

- <u>Collaborators:</u>
- UF/IFAS CREC: Dr. Arnold Schumann, Dr. Evan Johnson, Dr. Tripti Vashisth
- UF/IFAS SWFREC: Dr. Kelly Morgan, Dr. Said Hamido.
- SWSD Gainesville: Dr. Peter Nkedi-Kizza, Dr. Gabriel Landry-Maltais
- My Program Team: Dr. Wije Bandaranayake, William Ratnasiri, Alex Hernandez,
- Graduate students: Samuel Kwakye, Qudus Uthman and Eduardo Esteves
- Sponsors: UF/IFAS Citrus Initiative, SWFWMD, USDA-NIFA

QUESTIONS/COMMENTS?

E-mail: <u>dkadyampakeni@ufl.edu</u> Tel. 863-956-8843 Facebook and Twitter: Water and Nutrient Management Lab @ CREC

